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Reaction diffusion in heterogeneous binary 
systems 
Part 1 Growth of the chemical compound layers at the interface 
between two elementary substances." one compound layer 

V. I. DYBKOV 
Institut Problem Materialoznavstva, Kiev 252180, USSR 

A theory is proposed for solid-state growth of the chemical compound layers at the interface 
between two elementary substances one of which is solid at the given temperature while the 
other may be solid, liquid or gaseous. Not only the rates of diffusional transport of the reacting 
species through the growing layers but also the rates of chemical reactions taking place at the 
interfaces between the phases involved in the interaction are taken into account. This theory 
seems to be more consistent with the available experimental data than the existing 
"'diffusional" theory. 

1. Introduction 
The improvement of existing materials as well as the 
development of new materials is often based on the 
use of a chemical reaction in which a solid reacts with 
a gas, a liquid or another solid to form a solid product 
(an oxide, an intermetallic, a salt, etc.). In spite of 
theoretical interest and obvious practical importance 
the kinetics of such reactions have so far received 
comparatively little attention [1-3]. 

A continuous, coherent layer of solid product 
separates the reactants from one another and 
therefore the rate of diffusional transport of the react- 
ing species through the layer becomes the dominant 
factor determining the overall reaction rate. In such a 
case the layer growth usually follows the parabolic 
law which was first established experimentally by 
Tammann and was then obtained theoretically by 
Wagner (see [4-6]). 

A recent theory developed by Wagfner [7], Kidson 
[8], Heumann [9], Gurov et al. [10], Geguzin [11] and 
other investigators is based upon Fick's laws (mainly 
upon Fick's first law) and takes no account of the rate 
of chemical reactions. This approach seems to be 
debatable in the case of a chemical compound layer. 
There are a number of discrepancies between the exist- 
ing "diffusional" theory and the experimental data 
available in the literature; the main ones are the 
following: 

1. From a "diffusional" point of view, there is no 
restriction on the number of compound layers grow- 
ing simultaneously in a given couple. All the layers are 
expected to occur and grow simultaneously [10]. This 
is contrary to the observations. There are a number of 
binary systems in which up to ten compounds exist in 
a certain range of  temperatures. However, nobody has 
reported the simultaneous growth, say, of five or six 
compound layers, the usual number being one to three 
and rarely four [5, 12]. 
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2. The layer growth is often non-parabolic, 
especially in those cases where two or more compound 
layers grow simultaneously. In the initial stage the 
process is always non-parabolic, the layer thickness- 
time relationship being linear [5, 6, 12]. 

3. From "diffusional" considerations it follows that 
the layer, once formed, cannot then disappear because 
the smaller the thickness the greater is the layer- 
growth rate, that being inversely proportional to the 
existing layer thickness [1, 4, 5]. However, this is not 
the case. For example, van Loo and Rieck [13] 
annealed a Ti-Ti3A1-TiA1 TiA12-TiA13-A1 speci- 
men at 625~ for 15 h. As a result, the layers Ti3 A1, 
TiA1 and TiAI2 vanished completely and the situ- 
ation was changed to Ti-TiA13-A1. Note that all 
these intermetallics are thermodynamically stable at 
625~ 

The neglect of a chemical reaction step appears to 
be the main source of discrepancies between the 
theory and experiment. An equation taking into 
account the relative influence of physical and chemical 
phenomena on the rate of growth of a chemical com- 
pound layer was first proposed by Evans in 1924 [14]. 
Evans' equation provides a suitable basis for under- 
standing the nature of the processes taking place in 
multiphase binary systems. Unfortunately, there is a 
tendency to underestimate its importance. 

The aim of the present work is, on the basis of 
Evans' equation and Arkharov's concept of the reac- 
tion diffusion [15-17], to attempt: (a) to reveal the role 
of diffusion and that of chemical reactions in deter- 
mining the compound layer-growth kinetics, and (b) 
to develop the simplest physicochemical theory of 
heterogeneous kinetics in binary systems. 

2. Solid-state growth of one compound 
layer 

Let us first consider the case where a single layer of the 
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Figure 1 Schematic diagram to illustrate the growth of the ApBq layer between the elements A and B. 

Di stance 

chemical compound ApBq, p and q being positive 
integers, grows between the elements A and B, Fig. 1. 

2.1 .  R e a c t i o n  d i f f u s i o n  m o d e l  
The solid-state growth of the ApBq layer between the 
two mutually insoluble (%A)= 0 and CA(m = 0) 
elementary substances A and B, say at TI, is due to 
two simultaneous (parallel) processes each of which 
proceeds in two consecutive (alternate) steps. Firstly, 
the B atoms diffuse across the ApBq layer and then 
react at the A/A;B u interface (interface 1) with the 
surface A atoms according to the equation 

qB(diffusing) + pA(surface) = ApBq (1) 

Secondly, the A atoms diffuse across the layer in the 
opposite direction and react at the ArBq/B interface 
(interface 2) with the surface B atoms that can be 
described as follows 

qA(diffusing) + qB(surface) = ApBq (2) 

From the view-point of kinetics, Reactions 1 and 2 
are, in general, different, while the reacting substances 
are the same, because the reactants A and B enter 
these reactions in quite different states, namely, as the 
diffusing or as surface atoms. The case where Reac- 
tions 1 and 2 have equal rates is therefore an exception 
rather than the rule. 

Both processes involve two consecutive steps 
[15-17]: (a) diffusion of atoms through the layer; (b) 
chemical reaction with the participation of these 
atoms taking place at the interface between the layer 
and either A or B. The processes involving these two 
steps are usually called the reaction or chemical dif- 
fusion [15-17]. 

2.2. A s s u m p t i o n s  
The consideration below is based upon the following 
assumptions: 

1. the concentrations of components A and B in the 

3 0 7 9  



layer at boundaries 1 and 2 are equal to the limits of 
the ApBq homogeneity range; 

2. a change in concentration with distance within 
the ApB~ layer is linear (see Fig. 1); 

3. during growth, both the boundary concentra- 
tions and a linear concentration distribution remain 
almost unchanged. 

It should be noted that these assumptions are usually 
made to treat the growth kinetics of compound layers 
[7, 9, 14]. If these assumptions are satisfied then 

OcB 
0 (3) 
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Equation 3 expresses the condition of a quasistation- 
ary concentration distribution when the concentra- 
tions of A and B within the Ap Bq layer depend only on 
position, x, and are independent of time, t [4]. It is 
obvious that this condition is undoubtedly satisfied in 
the case of stoichiometric compounds having no 
ranges of homogeneity. This approximation seems to 
be fairly justified in the case of chemical compounds 
with narrow ranges of homogeneity (compared to the 
average content of a given component in a compound) 
and is confirmed by electron probe microanalysis (see, 
for example, [18]). It is the formation of these chemical 
compounds which will be treated here. 

2.3. One process in the A - B  system 
Let Reaction 1 be the only reaction in the A B 
system. This is the case when the diffusion of A within 
the ApBq layer is negligible compared to that of B. 

In an initial stage of the interaction, the ApBq layer 
thickness is small and therefore the diffusional path is 
very short. Hence, a number of B atoms is able to 
reach the A/ApBq interface. The overall rate of Reac- 
tion 1 is, therefore, limited only by the reactivity of the 
A surface. The reactivity of the surface of the sub- 
stance A (or its combining ability) is the largest num- 
ber of the diffusing B atoms which can be combined by 
the surface A atoms into the mpBq compound per unit 
time. It is clear that the reactivity of the A surface 
towards B atoms remains unchanged during the whole 
course of Reaction 1. This is the reaction regime of 
growth of the ApBq layer when the growth rate is 
determined only by the rate of chemical reaction at the 
A/ApBq interface, the transport of B atoms across the 
layer being very fast (in the limit, instantaneous). In 
such a case, the layer-growth rate is constant; thus 

(ds--- 3 = k0m (4) 
\ t i t , /r  eaction regime 

where x is the thickness of the mpBq layer (m); t the 
time (sec); k0m the rate constant of the layer growth 
under conditions of reaction control (chemical con- 
stant, m sec- t). In the subscript 0B 1, zero indicates the 
reaction regime of growth of the layer, B shows that it 
is the B atoms which diffuse towards the reaction site 
and 1 shows where chemical reactions take place (at 
interface 1). 

It is obvious that the reaction regime of growth of 
the mpBq layer is one of the two extremes. Another 
extreme is the diffusional regime of its growth when 

the rate of Reaction 1 is limited only by the rate of 
diffusional transport of B atoms across the layer, the 
further chemical reaction with the participation of 
these atoms being very fast. This is obviously the case 
if the A; Bq layer is fairly thick. This "diffusional" case 
can easily be treated using Fick's first law 

_ / )  ~CB 
JB = ~" B -0--fx (5) 

wherejB is the flux of the diffusing B atoms across the 
ApBq layer towards interface 1 (mol m -2 sec l); DB the 
diffusion coefficient of B into the ApBq lattice 
(m2sec-l); % the concentration of component B 
within the compound layer (tool m 3). 

If the concentration distribution is linear, then (see 
Fig. 1) 

~CB CB 2 - -  CB1 
- ( 6 )  

~x x 

Hence, 

JB = DB%2 -- cm (7) 
X 

If the chemical reaction is instantaneous then all the B 
atoms passing across the layer per unit time are com- 
bined by the surface A atoms into the mpBq compound 
at interface 1. This results is an increase in thickness of 
the layer by dx. Therefore, the flux, JB, can alterna- 
tively be expressed as follows 

JB = dt iffusional regime 
% - -  ( 8 )  

By equating Equations 7 and 8, one obtains 

(dX)d DB(%2--cm) (9) 
"-~ iffusional regime s X 

In this equation 

klBl __ DB(cB2 --  %, )  (10) 
CBI 

is the rate constant of the layer growth under con- 
ditions of diffusional control (physical constant, 
m 2 sec-l). In the subscript 1B 1 the first 1 indicates the 
diffusional regime of the layer growth and the other 
indexes have the former meaning. 

It should be noted that the definitions of the 
reaction and diffusional regimes given above are 
"practical" ones. The more precise theoretical defini- 
tions will be given below. 

It should be emphasized that equations such as 
Equations 9 and 10 were first proposed to calculate 
the diffusion coefficients in growing intermetallic 
layers by Heumann [9]. 

In general, the growth rate of the ApBq layer 
depends on both the rate of diffusion and the rate of 
chemical reaction since each of these two processes 
always proceeds at a finite rate. Therefore, Equations 
4 and 9 are the limiting cases of a general relationship 
which can formally be found by summating the 
reciprocals; thus 

dx k0m 
dt 1 + (komx/klm) (11) 
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Integration of Equation 11 at the initial condition 
x = 0 a t t  = 0yields 

x 2 x 
r = - -  + - -  (12) 

2klm k0m 

The equations of this type were first obtained by 
Evans [14]. It is seen that ifk0m < kial/X then Equa- 
tion 11 transforms into Equation 4. Therefore, for 
small x Equation 12 becomes 

x = komt (13) 

Hence, the reaction constant k0m can be found as the 
slope of  the initial straight portion of  the experimental 
thickness-time dependence plotted in x - t  coordi- 
nates. 

On the other hand, if kom >> kl~l/x then Equation 
11 reduces to Equation 9. Accordingly, for large x 
Equation 12 simplifies to 

x 2 = 2klmt (14) 

The diffusional constant klm can therefore be found as 
the slope of the straight portion of the same data, but 
plotted in x2- t  coordinates. Another way to find klB 1 
is by calculation using known values of  DB, CBI and 
%2 (Equation 10). 

Note that the reactivity of  the A surface towards B 
atoms remains constant, the substance A being uni- 
form from a macroscopic view-point, whereas the flux 
of  these atoms through the ApBq layer gradually 
decreases as the layer thickens. Hence, there exists a 
single value, ~(B) of  the layer thickness at which these "~1/2, 
quantities are equal. The flux is expressed by Equation 
7 while the reactivity is 

JB = CBI = CB1 k0gl (15) 
reaction regime 

Thus, 

x ( m _  klm (16) 
1/2 kom 

,.(m the rate of reaction at the A surface is less At x < ~/2 
than the flux of  B atoms through the ApBq layer and 
therefore there is an "excess" of these atoms which 
can be used by the layers of  other chemical com- 
pounds (enriched in component A compared to 
ApBq). On the other hand, at x > x}~ there is a deficit 
of  B atoms because the rate of reaction at the A sur- 
face is greater than the flux of B atoms through the 
layer. On reaching interface 1, each B atom will 
therefore be combined into the ApBq compound. No B 
atom is thus available for the growth of other layers 
enriched in component A. 

Equations 11 and 12 can easily be interpreted in 
terms of  time. Indeed, Equation 11 can be rewritten as 
follows 

(x 
at = ~ + I--[- ' lax (17) 

koB,/ 

The quantity on the left-hand side of  Equation 17 is 
the "differential" time, dt, necessary for the Ap Bq layer 
to grow from x to x + dx. Hence, the first term on the 
right-hand side is the time for diffusion Of the reacting 

atoms to the reaction site 

X 
dtdi~u~ion - dx (18) 

klBl 

and the second is the time for subsequent chemical 
transformations with the participation of  these atoms 

1 
d/reaction -- dx (19) 

k0B i 

Note that the critical thickness, ~i/:"(m, of  the ApBq layer 
can be found from Equation 17 by putting dta~frosio, = 
d/reaction. This equality means that half of the "differen- 
tial" time is spent on the transport of  atoms and 
another half is spent on the subsequent chemical 
reaction. 

2.4. General case: Reactions 1 and 2 proceed 
simultaneously 

In general, Reactions 1 and 2 take place simul- 
taneously. The growth of  the ApBq layer to the left 
from the original A-B interface is due to Reaction 1 
while its growth to the right is due to Reaction 2 (see 
Fig. 1). Let dt be the time necessary for the ApBq layer 
to grow from x to x + dxm at interface 1 and from x 
to x + dXA2 a t  interface 2. Then taking into account 
the results of  Section 2.3 one obtains 

and 

x 1_.1__) dxm (20) 
dt = ~ + k0mJ 

x 1 "]dxm (21) 
dt = ~ + k0A:,] 

where k0A 2 is a chemical constant and klg2 is a physical 
(diffusional) constant; the latter is a function of DA, 
the diffusion coefficient of  A in the ApBq lattice, and of 
CAI and CA2, the boundary concentrations of  A into the 
layer: 

DA(CA1 -- CA2) 
klA 2 = (22) 

CA2 

Reactions 1 and 2 are considered to be independent of 
one another for the two following reasons: (a) they are 
separated in space; (b) the fluxes, Jg and JB, of com- 
ponents A and B across the growing Ap Bq layer appear 
to be independent of each other. This is due to the fact 
that in the lattice of  a chemical compound each com- 
ponent forms its own sublattice [4]. In this sublattice 
all atoms as well as all sites are structurally equivalent. 
Again, the vacancies are continuously created in the 
sublattices as Reactions 1 and 2 proceed, namely, the 
vacancies in the B sublattice due to Reaction 1 appear 
at boundary 1 whereas the appearance of vacancies in 
the A sublattice at boundary 2 is due to Reaction 2. 
The vacancies formed are filled by the atom-by-atom 
movements. In such a way the B atoms are transferred 
from interface 2 to interface 1 while the A atoms are 
transferred in the opposite direction. The most essen- 
tial point is that each kind of  atoms moves in its own 
sublattice, thus not hindering the movement of  
another kind of atoms. 
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From Equations 20 and 21 it follows 

dXBI k0B1 

dt 1 + (koalX/ku~l) 

and 

(23) 

dXA2 k0A2 - (24) 
dt 1 + (koA2X/k,A2) 

A general equation describing the ApBq layer growth 
between the A and B phases is the sum of Equations 
23 and 24; thus 

dx kom k0A2 
d t  = 1 + (komx/k,m) + 1 + (komx/ktm) (25) 

The solution to this equation is 

R~x 2 + R 2 x - -  R31n (1 + R4x ) = t, (26) 

where 

1 
R I = 

2(klm -4- klA2 ) 

k~sl koA2 -4- kom k~A2 
R 2 = 

k o B l k o A 2 ( k l B  1 n t" klA2)  2 

klm klA2(kom klg2 -- klm koA2)2 
R3 = 2 k02mk0A2(klm + kja2) 3 

koBlkoA2(klB 1 q- klA2) 
R 4  = 

k l B I k l A 2 ( k 0 a l  -~- k0A2) 

Note that there exists another critical value, 
x(A) klA2/koA2, at which the reactivity of the B sur- 1/2 
face towards A atoms and the flux of A atoms through 
the ApBq layer are equal. The existence of the critical 
thicknesses, ~(A) and ~(B) provides a basis for the ~1/2 "~1/2~ 

theoretical definitions of the reaction and diffusional 
regimes of growth of the ApBq layer. That is, the 
regime of growth of the layer is reaction controlled 

,~(B) (d/reactio n > with regard to component B if x < ~t/2 
dtd~fr~io., see Equations 17 to 19) and is diffusional with 

.~(I~) (dtreactio n < regard to this component if x > ~/2 
dt~r~s~o,). Again, the regime is reaction with regard to 

,.(A) and is diffusional i fx  > ~J/2. component A i fx  < ~:2 ~(A) 
In general, 

x(A) .~(B) 
1/2 # ~1/2 

This is the only reason for the complex look of Equa- 
tion 26. Ifk0m = k0A 2 and k~ul = k~g2 then Equations 
25 and 26 become, respectively, 

dx 2k0m 
d--[ = 1 + (komx/km~) (27) 

and 
X 2 X 

t = - -  + - -  ( 2 8 )  
4ktm 2k0al 

For small x, Equation 28 reduces to 

x = 2komt, (29) 

whereas for large x it becomes 

x 2 = 4klmt. (30) 

This is the case when the contributions of both 
components to the layer growth are equal (compare 

Equations 29 and 30 with Equations 13 and 14). In 
general, these contributions are different. Neverthe- 
less, an initial portion of the thickness-time relation- 
ship is always a straight line. Indeed, if kom <. kjm/x 
and k0A 2 <~ kla2/X (or, alternatively, x ,~ ,,(m and ~'~ lJ2 
x < x{~2 )) then 

dx 
d---t = k~ -it- k0A2 (31) 

and therefore 

x = (k0m + k0g2)t (32) 

Again, for fairly large x the conditions k0m >> k~m/x 
and k0A 2 >> k~A2/X (X >> ,,(a) and x >> ,.(A)~ ~/2 ~/2J are satis- 
fied; thus 

dx klm q- klA2 
- ( 3 3 )  

dt x 

and 

X 2 = 2 ( k l B  l -~- klA2)t. ( 3 4 )  

Therefore, this long-time portion of the x - t  relation- 
ship is parabolic. 

3. The e f f e c t  of  dissolution on the 
g r o w t h  of the  AaB q layer 

Let A be a solid and B a liquid, say at T2,see Fig. 1. 
If the liquid is undersaturated with A then the dissolu- 
tion of the layer occurs simultaneously with its 
growth. The overall change in thickness of the layer is 
therefore the difference between the rate of growth of 
the layer and the rate of its dissolution. 

3.1. Disso lu t ion  of the  layer 
The rate of dissolution of the layer is described by the 
equation [19-21] 

(d-d@)d = b e x p ( - a t ) ,  (35) 
issolution 

where a = ks~v, b = csk/~ap~oq~; k being the dissolu- 
tion rate constant (msec-~), s the specimen surface 
area (mE), V the volume of the liquid (m3), c s the 
saturation concentration of A in B (kg m 3), 0ApBq the 
density of ApBq, and r the content of A in ApBq in the 
mass fraction. 

It is assumed that the compound ApBq decomposes 
during dissolution, i.e. ApBq --* pA + qB. The dis- 
solution-rate constant, k, can be found from the 
Nernst-Shchukarev equation 

c = cs[1 - exp ( - a t ) l ,  (36) 

describing a change in concentration, c, of A in B with 
time, t (for details see [19-21]). 

If  the compound ApBq dissolves without decom- 
position then b = CskVAp.B~, VApBq being the molar 
volume of ApBq (m'mol- ' ) .  Note that in this case c 
and c~ are the concentrations of ApBq into the liquid. 

3.2. Growth of the layer under cond i t ions  of 
its s imul taneous d issolut ion 

For simplicity, consider the case where both com- 
ponents equally contribute to the layer growth, i.e. 
k0m = k0m2 and klm = klA2- Then Equation 25 
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~, Xmax 

Time 

Figure 2 Growth of  the Ap Bq layer under conditions of  its simul- 
taneous dissolution into the liquid at a constant rate. 

becomes 

dx ko 
- (37)  

dt 1 + (kox/kO 

where k 0 = k0m + k0A2 = 2kom, kl = klm = klm. 
Subtracting Equation 35 from Equation 37 yields an 
equation describing the rate of growth of the layer 
under conditions of its simultaneous dissolution 

dx k0 
- b exp ( - a t )  (38) 

dt 1 + (kox/kO 

Ifs/v tends to zero then exp ( -  at) is close to unity. In 
such a case, the rate of dissolution of the layer is 
almost constant; therefore, 

dx k 0 
- b (39)  

dt 1 + (kox/kl) 

The solution to this equation is 

kl I kobx l x 
b21n 1 k,(~0-- b) b - t (40) 

From Equation 40 it follows that the layer thickness 
tends asymptotically to a maximum value (see Fig. 2) 
which can easily be found from Equation 39 by 
putting dx/dt = 0; thus 

Xmax = kl(k0 -- b)/kob. (41) 

It is seen that if k0 > b then the ApBq layer grows 
between the A and B phases from the very beginning 
of the interaction. However, if k0 < b the layer cannot 
grow because the rate of its dissolution exceeds the 
growth rate. In general, the dissolution rate decreases 
with time from b to 0. Therefore the time, to, is 
achieved when 

k 0 >~ b exp ( - a to )  (42) 

and the ApBq layer will grow between the A and B 
phases only after some delay. 

4. S o l i d - g a s  s y s t e m  
If the reaction product is non-volatile, there is ahnost 
no difference between" the solid-gas, solid-liquid and 
solid-solid interaction. However, if the product is 
volatile, the effect of evaporation on the layer growth 
should be taken into account. 

4.1. Evapora t ion  of the  layer 
The rate of evaporation of the layer is described by an 
equation analogous to Equation 35 [21]: 

(d-~-)c = b e x p ( - a t )  (43) 
vaporation 

where a = ks~v, b = c~kV%B~; k being the evapor- 
ation-rate constant (m see-'), Cs the equilibrium con- 
centration of ApBq into the diffusion boundary layer 
at the ApBq/B interface (tool m-3), and VApBq the molar 
volume of ApBq (m3mol-J). 

It is assumed that the product evaporates without 
decomposition: 

(ApBq)solid ~ (ApBq)gas (44) 

4.2. The effect of evaporation on the rate of 
the layer growth 

The most convenient method of investigation of the 
solid-gas interaction is a continuous thermogravi- 
metric one (see, for example, [12]). If  the reaction 
product is non-volatile, a change in the specimen mass 
reflects a change in the layer thickness because these 
quantities are proportional. If the product is volatile, 
this change is due to two factors acting in opposite 
directions, namely, the growth of the ApBq layer 
results in an increase whereas the evaporation of 
ApB 0 results in a decrease of the specimen mass. 
Experiments are usually performed in large volumes 
of gaseous phase and therefore the condition s/v ~ 0 is 
almost always satisfied. Hence, the thickness of the 
ApBq layer at the A/B interface tends with time to a 
limiting value defined by Equation 41. On the other 
hand, the amount (thickness) of the Ap Bq evaporated 
increases linearly as the rate of evaporation remains 
constant and equals b (see Equation 43). A typical 
curve is shown schematically in Fig. 3. It is seen that 
a mass loss may be observed instead of a mass gain 
if the duration of the experiment is long. Such a 
dependence was obtained, for example, during oxi- 
dation of molybdenum, tungsten and other metals 
whose oxygen-rich oxides are volatile at elevated tem- 
peratures [5, 12, 22, 23]. 

If k 0 < b, the ApBq layer cannot grow at the A/B 
interface. Reactions 1 and 2 proceed, of course, but all 
the product evaporates. 

5. D i s c u s s i o n  
From Equations 12 and 17 to 21 it follows that the 
portion of the time required for the chemical trans- 
formations gradually decreases as the layer thickens 
and at last at large thicknesses it becomes negligible 
compared to the portion necessary for the diffusion of 
atoms. In this stage of the interaction, the overall rates 
of Reactions 1 and 2 are determined practically only 
by the rates of diffusion of the reacting atoms. This is 
the "reason" for the neglect of a chemical reaction 
step as such. In the case of a single layer such a neglect 
does not result in a serious error as the initial linear 
stage of the layer growth is observable only with the 
help of very sensitive experimental techniques. How- 
ever, this is not the case for multiphase layers where 
the neglect of a chemical reaction step leads to qualita- 
tive errors. 
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Figure 3 Change in mass of a specimen in the case of a volatile 
reaction product (solid line): 1, mass of the solid product layer at the 
solid-gas interface; 2, mass of the gaseous reaction product. 

6.  C o n c l u s i o n s  
1. Growth of  the mpBq compound layer between the 

elements A and B is due to two simultaneous pro- 
cesses. 

2. Each of these two processes occurs in two con- 
secutive (alternate) steps: (a) diffusion of  atoms; (b) 
chemical reactions with the participation of  these 
atoms. 

3. In general, an initial portion of the layer 
thickness-time relationship in linear but there is then 
a gradual transition from a straight line to a parabola. 
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